Constellation-X Facility Science Team Meeting (FST) — February 21/22, 2008

Facility Science Team Panels

Ann Hornschemeier/GSFC
Constellation-X Deputy Project Scientist

Ann.Hornschemeier@nasa.gov

Topics covered : Constellation-X FST Science Panels

- Panel restructuring process
- Panel topics and panel chairs
- Charge to the panels
- Logistics/Boundary Conditions

Panel Restructuring Process

- During Fall 2007 panels re-opened to aid in preparing for the decadal survey (emails sent to high-energy astrophysics community lists)
- More than 120 people responded from >55 institutions including ~13 foreign institutions.
- These 120+ people have been organized into 14 panels: 5 Galactic, 8 extragalactic and one multidisciplinary panel on "Plasma Diagnostics and Atomic Astrophysics"
- An introductory message with a 'charge to the panels' was emailed out on 12/20/07
- A telecon with the panel chairs was held January 4, 2008 to discuss the process and prepare for this FST meeting
- Each panel chair has been organizing telecons and/or email exchanges over the last 2 months and will present their work thus far and future plans at this meeting

Science Panels - Inside the Galaxy

Note focus is on science themes/topics rather than target type

Panel Topic	Chair
Extreme States of Matter in Neutron Stars	Frits Paerels (Columbia)
Accretion Physics in Stellar Systems	Jon Miller (Michigan)
Production and Distribution of the Elements	John Hughes (Rutgers)
MHD Physics in Stellar Environments	Rachel Osten (U. of Md)
Solar System, Planet Formation & Evolution	Eric Feigelson (PSU)

Science Panels - Outside the Galaxy

Panel Topic	Chair
Missing Baryons/WHIM; synergy with UV spectroscopy	Michael Shull (Colorado)
Census of Black Hole Accretion in the Universe	Nancy Levenson (U. of Kentucky)
Evolution of Large Scale Structure in the Universe	Steve Allen (KIPAC/Stanford)
Hot Baryons in Deep Potential Wells	Christine Jones (SAO)
Testing General Relativity and Measuring Black Hole Spin	Chris Reynolds (U. of Md)
Supernova/Stellar Feedback	David Strickland (JHU)
AGN Feedback: Outflows & Jets	Andy Fabian (Cambridge)
The high-z Universe, Re-ionization & Synergy with JWST "First Light" Science	Niel Brandt (PSU)

Science Panels - Cross-Panel Working Group on Diagnostics

Panel Topic	Chair
Plasma Diagnostics and Atomic Astrophysics	Nancy Brickhouse (SAO)

Charge to the Panels

The Science Panels are expected to review, update, and strengthen the Constellation-X science case in preparation for the upcoming decadal survey.

Why now? (beyond the decadal survey timing)

- Focus the science case back to being an "astrophysics observatory" rather than a Beyond Einstein mission
- The last science case overhaul was in late 2004/early 2005: the mission configuration has changed since then
 - XGS has higher spectral resolving power (R=1250 is the requirement)
 - XMS has a larger FOV (5' x 5' versus 2.5' x 2.5')
 - HXT has reduced collecting area (150 cm² at 40 keV)

Work Flow for the Science Panels

- 1. Highlight one or more key science objectives within the topical area
 - Generate some text motivating why this is important
 - broad astrophysics perspective
 - why X-rays are unique or essential to the science
- 2. Identify possible measurements/observations with Con-X which can be evaluated through simulations.
- 3. Produce science materials for promoting Constellation-X:
 - 1. Brief, 'elevator-pitch' summaries including Power Point slides
 - 2. Detailed simulations demonstrating how the science goals map to the mission parameters.
 - 3. Written text (TBD): ApJ papers and/or conference proceedings are encouraged

Work Flow for the Science Panels

February 2008

- 1. Highlight one or more key science objectives within the topical area
 - Generate some text motivating why this is important
 - broad astrophysics perspective
 - why X-rays are unique or essential to the science

Spring 2008

- 2. Identify possible measurements/observations with Con-X which can be evaluated through simulations.
- 3. Produce science materials for promoting Constellation-X:

Finish by August 2008

- 1. Brief, 'elevator-pitch' summaries including Power Point slides
- 2. Detailed simulations demonstrating how the science goals map to the mission parameters.

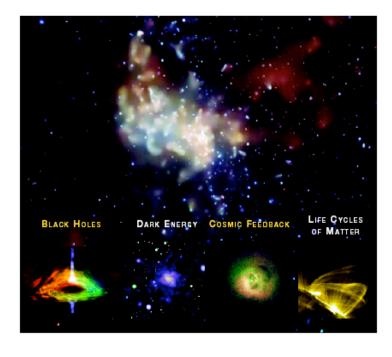
Fall

2008

3. Written text (TBD): ApJ papers and/or conference proceedings are encouraged

Logistics/Boundary Conditions

- There is a new email address that reaches all three of Randall, Mike and Ann: conx-observer@lists.nasa.gov
- Mission parameters:
 - Mission cost and programmatic risk are expected to be factors in the decadal survey process.
 - ANSWER THIS QUESTION:
 What science can be done with the mission as described?
 (for now, imagine you are writing proposals, not designing the mission)
 - For science simulations use the parameters as defined for the Atlas V launch vehicle configuration: the latest response matrices are the FEB 2008 versions at constellation.gsfc.nasa.gov
 - Also please use the new simx simulator (R. Smith's talk, NEXT)



Thank you!

NASA/TP-2005-212784

Science with Constellation-X

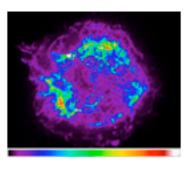
May 2005

- We hope to be producing great new products this fall based on your hard work.
- Thank you VERY much for taking the time to participate in the Con-X FST Science Panels

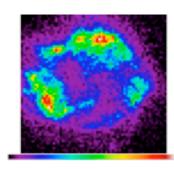
Key Performance Requirements

Effective Area:	15,000 cm ² @1.25 keV
	6,000 cm ² @6 keV
	150 cm ² @40 keV
Bandpass:	0.3 – 40 keV
Spectral Resolution:	1250 @0.3 – 1 keV
	2400 @6 keV
Angular Resolution	15 arcsec 0.3 – 7 keV
	30 arcsec 7.0 - 40 keV
Field of View	5 x 5 arcmin

Constellation-X Facility Science Team Meeting (FST) — February 21/22, 2008


The Constellation-X Event Simulator

Randall Smith


NASA/GSFC & JHU

http://lheawww.gsfc.nasa.gov/users/rsmith/simx/index.html

simx: A Constellation-X Event Simulator

Download simx

Install simx

Run simx

Downloading simx

Click to download the tarball for <u>simx</u>. The current version is 0.2. The model psf is based on the simulated performance on-axis at 6.0 keV; no variation with energy or off-axis position is included. Energy resolution is based on the current response matrix. **Simx** is not particularly fast; we are working

Installing simx

simx models the SXT PSF and XMS response, generating OGIPstandard event files

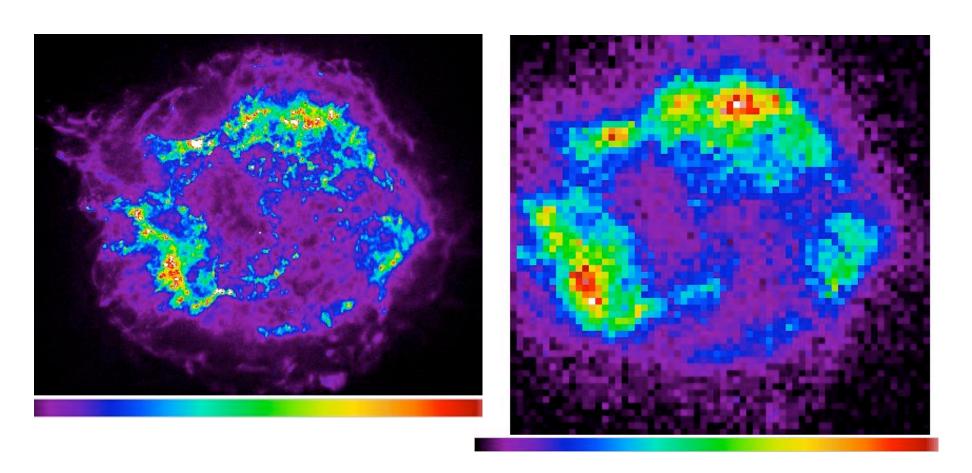
Installation

Download simx from

http://lheawww.gsfc.nasa.gov/users/rsmith/simx/

Install via: (requires c compiler)

```
unix% tar -zxf simx-0.2.tar.gz
unix% cd simx-0.2
unix% ./configure
unix% make
unix% make
```


 Tested on OS X, various flavors of Linux, and Solaris

Running simx

- Detailed instructions in the 'doc/' directory list how to install and run simx.
- Sample run:
 - unix% pset simx OutputFileName=MyRun
 - unix% pset simx Exposure=100000
 - unix% pset simx SourceFlux=5e-11
 - unix% pset simx SourceImageType=Image
 - unix% pset simx SourceImageFile=a2029_img.fits
 - unix% pset simx SourceSpectrumType=spec.dat
 - unix% pset simx SourceSpectrumTpe=XSPEC_Fiel
 - unix% simx
- Output is MyRun_evt.fits, usable with ds9, xselect (with some assistance) or dmextract

Sample Output

Cas A seen with Chandra and Con-X

simx Features and Plans

- Uses either point source or image.
 - Goal to include a 'photon-list' input including both position and energy for each photon.
- SXT PSF based on P. Reid simulation on-axis at 6 keV, runs to 100" at maximum.
 - Goal to include position & energy-dependent PSF
- For bright sources, simx estimates deadtime at runtime.
 - Goal to flag 'degraded' events in event files.

Possible Features

- Include vignetting model
- Include background terms from:
 - Instrumental/Cosmic Ray effects (Non-X-ray Bgd)
 - Cosmic X-ray Background
 - Solar-wind Charge Exchange effects
- Modeling XMS pixel differences; central 2.5' pixels may have higher resolution than outer pixels.
- Web-based version of simx (note that input and output files can be large)
- Other suggestions?

Conclusions

- Available (currently) at http://lheawww.gsfc.nasa.gov/users/rsmith/simx
- Will soon move to the main Con-X website.
- Although basic, simx is adequate to determine how well a point source can be extracted from diffuse emission or other sources, or to see how well a radial profile can be measured.
- Contact <u>Randall.K.Smith@nasa.gov</u> with suggestions for improvements or bug reports...